

- High resolution module, 20 cm
- Fast conversion down to 0.5 ms
- Low power, 0.6 μA (standby < 0.15 μA at 25°C)
- Integrated digital pressure sensor (24 bit ΔΣ ADC)
- Supply voltage 1.8 to 3.6 V
- Operating range: 300 to 1200 mbar, -40 to +85 °C
- Extended pressure range: 10 to 2000 mbar
- I²C interface
- No external components (Internal oscillator)
- Excellent long term stability
- Sealing designed for 2.5 x 1mm O-ring

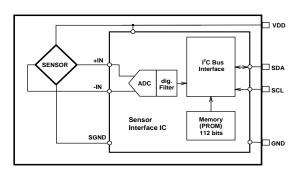
DESCRIPTION

The MS5805-02BA is a new generation of high-resolution altimeter sensors from MEAS Switzerland with I^2C bus interface. It is optimized for altimeters and variometers with an altitude resolution of 20 cm. The sensor module includes a high-linearity pressure sensor and an ultra low power 24 bit $\Delta\Sigma$ ADC with internal factory-calibrated coefficients. It provides a precise digital 24 Bit pressure and temperature value and different operation modes that allow the user to optimize for conversion speed and current consumption. A high-resolution temperature output allows the implementation of an altimeter/thermometer function without any additional sensor. The MS5805-02BA can be interfaced to virtually any microcontroller. The communication protocol is simple, without the need of programming internal registers in the device. This new sensor module generation is based on leading MEMS technology and latest benefits from MEAS Switzerland proven experience and knowhow in high volume manufacturing of altimeter modules, which have been widely used for over a decade. The sensing principle employed leads to very low hysteresis and high stability of both pressure and temperature signal.

FEATURES

FIELD OF APPLICATION

Mobile altimeter / barometer systems


Bike computers

Adventure or multi-mode watches

Variometers

Dataloggers

FUNCTIONAL BLOCK DIAGRAM

TECHNICAL DATA

Sensor Performances (V _{DD}	= 3 V)			
Pressure	Min	Тур	Max	Unit
Range	10		2000	mbar
ADC		24		bit
Resolution (1)		/ 0.19 / 0 6 / 0.03 /		mbar
Accuracy 25°C, 750 to 1100 mbar	-2		+2	mbar
Accuracy -20°C to + 85°C, 300 to 1200 mbar (2)	-4		+4	mbar
Response time		/ 4.1 / 14	ms	
Long term stability		±1		mbar/yr
Temperature	Min	Тур	Max	Unit
Range	-40		+85	°C
Resolution		<0.01		°C
Accuracy	-1		+1	°C
Notes: (1) Oversampling Ratio: 2 (2) With autozero at one			2048 / 40	96/ 8192

PERFORMANCE SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Supply voltage	V_{DD}		-0.3		+3.6	V
Storage temperature	Ts		-20		+85	°C
Overpressure	P _{max}				5	bar
Maximum Soldering Temperature	T _{max}	40 sec max			250	°C
ESD rating		Human Body Model	-2		+2	kV
Latch up		JEDEC standard No 78	-100		+100	mA

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions		Min.	Тур.	Max	Unit
Operating Supply voltage	V_{DD}			1.8	3.0	3.6	V
Operating Temperature	Т			-40	+25	+85	°C
		OSR	8192		20.09		
			4096		10.05		
Supply current	1		2048		5.02		
(1 sample per sec.)	I _{DD}		1024		2.51		μA
			512		1.26		
			256		0.63		
Peak supply current		during conve	rsion		1.25		mA
Standby supply current		at 25°C (V _{DD} =	3.0 V)		0.01	0.1	μA
VDD Capacitor		From VDD to	GND	100	470		nF

ANALOG DIGITAL CONVERTER (ADC)

Parameter	Symbol	Condition	ns	Min.	Тур.	Max	Unit
Output Word					24		bit
		OSR	8192		16.44		
			4096		8.22		
Conversion time			2048		4.13		
Conversion time	ι _c		1024		2.08		ms
			512		1.06		
			256		0.54		

PERFORMANCE SPECIFICATIONS (CONTINUED)

PRESSURE OUTPUT CHARACTERISTICS (V_{DD} = 3 V, T = 25°C UNLESS OTHERWISE NOTED)

Parameter	Condition	ns	Min.	Тур.	Max	Unit
Operating Pressure Range	Prange	Full Accuracy	300		1200	mbar
Extended Pressure Range	P _{ext}	Linear Range of ADC	10		2000	mbar
Absolute Accuracy, no autozero	at 25°C,	7501100 mbar	-2		+2	mbar
Absolute Accuracy, autozero at one pressure point) mbar at 25°C) mbar, -2085°C	-2 -4		+2 +4	mbar
Maximum error with supply voltage	V _{DD} = 1.8	V 3.6 V		±2.5		mbar
Long-term stability				±1		mbar/yr
Resolution RMS	OSR	8192 4096 2048 1024 512 256		0.02 0.03 0.06 0.11 0.19 0.35		mbar
Reflow soldering impact	IPC/JEDEC J-STD-020C (See application note AN808 on http://meas-spec.com)			-1.5		mbar
Recovering time after reflow (1)				5		days

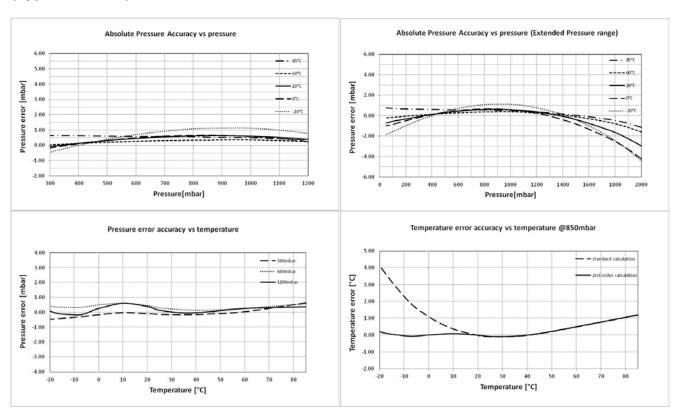
⁽¹⁾ Time to recover at least 66% of the reflow impact.

TEMPERATURE OUTPUT CHARACTERISTICS (V_{DD} = 3 V, T = 25°C UNLESS OTHERWISE NOTED)

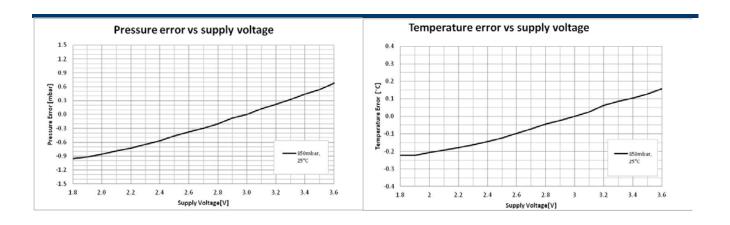
Parameter	Conditions		Min.	Тур.	Max	Unit
Absolute Accuracy	at 25°C -2085°C		-1 -2		+1 +2	°C
Maximum error with supply voltage	V _{DD} = 1.8 V 3.6 V			±0.3		°C
	OSR	8192		0.002		
Resolution RMS		4096		0.003		
		2048				°C
(to confirm with measured values)		1024		0.006		
values)		512		0.009		
		256		0.012		

PERFORMANCE SPECIFICATIONS (CONTINUED)

DIGITAL INPUTS (SDA, SCL)


Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Serial data clock	SCL				400	kHz
Input high voltage	V _{IH}		80% V _{DD}		100% V _{DD}	V
Input low voltage	V _{IL}		0% V _{DD}		20% V _{DD}	V
Input leakage current	I _{leak25°C} I _{leak85°C}	at 25°c			0.1	μΑ

DIGITAL OUTPUTS (I²C, DOUT)


Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Output high voltage	V _{OH}	I _{source} = 0.6 mA	80% V _{DD}		100% V _{DD}	V
Output low voltage	V _{OL}	$I_{sink} = 0.6 \text{ mA}$	0% V _{DD}		20% V _{DD}	V
Load capacitance	C_LOAD			16		pF

TYPICAL PERFORMANCE CHARACTERISTICS

PRESSURE AND TEMPERATURE ERROR VS PRESSURE AND TEMPERATURE (Typical values)

PRESSURE AND TEMPERATURE ERROR VS POWER SUPPLY (Typical values)

FUNCTIONAL DESCRIPTION

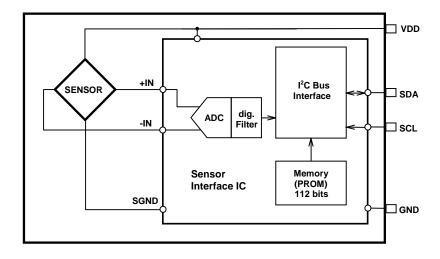


Figure 1: Block diagram of MS5805-02BA

GENERAL

The MS5805-02BA consists of a piezo-resistive sensor and a sensor interface integrated circuit. The main function of the MS5805-02BA is to convert the uncompensated analogue output voltage from the piezo-resistive pressure sensor to a 24-bit digital value, as well as providing a 24-bit digital value for the temperature of the sensor.

FACTORY CALIBRATION

Every module is individually factory calibrated at two temperatures and two pressures. As a result, 6 coefficients necessary to compensate for process variations and temperature variations are calculated and stored in the 112-bit PROM of each module. These bits (partitioned into 6 coefficients) must be read by the microcontroller software and used in the program converting D1 and D2 into compensated pressure and temperature values.

COMMUNICATION INTERFACE

The MS5805-02BA has been built with I²C serial interface.

Module ref	Mode	Pins used
MS5805-02BA01	I ² C	SDA, SCL

The external microcontroller clocks in the data through the input SCL (Serial CLock) and SDA (Serial DAta). The sensor responds on the same pin SDA which is bidirectional for the I²C bus interface. So this interface type uses only 2 signal lines and does not require a chip select.

PRESSURE AND TEMPERATURE CALCULATION Start Maximum values for calculation results: $P_{MIN} = 10mbar$ $P_{MAX} = 2000mbar$ T_{MIN} = -40°C T_{MAX} = 85°C T_{REF} = 20°C Read calibration data (factory calibrated) from PROM Value Size Example / Description | Equation Variable variable type Typical . [bit] min max C1 Pressure sensitivity | SENS T1 unsigned int 16 16 0 65535 46372 C2 Pressure offset | OFF T1 unsigned int 16 0 65535 43981 16 C3 Temperature coefficient of pressure sensitivity | TCS unsigned int 16 16 0 65535 29059 C4 Temperature coefficient of pressure offset | TCO unsigned int 16 16 0 65535 27842 C5 Reference temperature | T REF 65535 unsigned int 16 16 0 31553 C6 Temperature coefficient of the temperature | TEMPSENS unsigned int 16 16 0 65535 28165 Read digital pressure and temperature data D1 Digital pressure value unsigned int 32 24 0 16777216 6465444 D2 Digital temperature value unsigned int 32 24 0 16777216 8077636 Calculate temperature Difference between actual and reference temperature [2] dΤ signed int 32 25 -16776960 16777216 68 $dT = D2 - T_{REF} = D2 - C5 * 2^{8}$ 2000 Actual temperature (-40...85°C with 0.01°C resolution) TEMP signed int 32 8500 $TEMP = 20^{\circ}C + dT * TEMPSENS = 2000 + dT * C6 / 2^{23}$ = 20.00 °C Calculate temperature compensated pressure Offset at actual temperature [3] -17179344900 OFF signed int 64 41 25769410560 5764707214 $OFF = OFF_{T1} + TCO * dT = C2 * 2^{17} + (C4 * dT)/2^{6}$ Sensitivity at actual temperature [4] SENS signed int 64 41 -8589672450 12884705280 3039050829 SENS = SENS_{T1} + TCS * $dT = C1 * 2^{16} + (C3 * dT)/2^{7}$ Temperature compensated pressure (10...1200mbar with 110002 Р 0.01mbar resolution) 58 1000 120000 signed int 32 $P = D1 * SENS - OFF = (D1 * SENS / 2^{21} - OFF) / 2^{15}$ 1100.02 mbar Pressure and temperature value first order

Figure 2: Flow chart for pressure and temperature reading and software compensation.

Maximal size of intermediate result during evaluation of variable

min and max have to be defined min and max have to be defined min and max have to be defined

Notes [1] [2] [3] [4]

SECOND ORDER TEMPERATURE COMPENSATION

The results of the last first order calculation are entered in the following chart to obtain the pressure and temperature compensated with the 2^{nd} order: P2 and TEMP2.

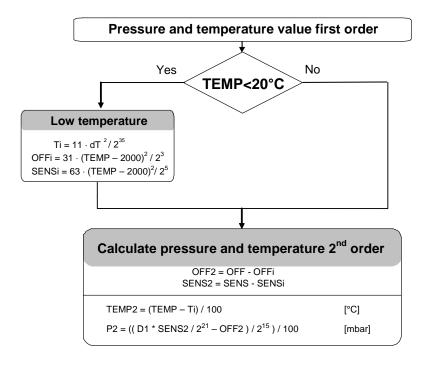


Figure 3: Flow chart for pressure and temperature to the optimum accuracy.

I²C INTERFACE

COMMANDS

The MS5805-02BA has only five basic commands:

- 1. Reset
- 2. Read PROM (112 bit of calibration words)
- 3. D1 conversion
- 4. D2 conversion
- 5. Read ADC result (24 bit pressure / temperature)

Each I^2C communication message starts with the start condition and it is ended with the stop condition. The MS5805-02BA address is 1110110x (write: x=0, read: x=1).

Size of each command is 1 byte (8 bits) as described in the table below. After ADC read commands the device will return 24 bit result and after the PROM read 16bit result. The address of the PROM is embedded inside of the PROM read command using the a2, a1 and a0 bits.

	Comi	mand	byte						hex value
Bit number	0	1	2	3	4	5	6	7	
Bit name	PRO M	CO NV	-	Тур	Ad2/ Os2	Ad1/ Os1	Ad0/ Os0	Stop	
Command									
Reset	0	0	0	1	1	1	1	0	0x1E
Convert D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convert D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convert D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convert D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convert D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convert D1 (OSR=8192)	0	1	0	0	1	0	1	0	0x4A
Convert D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convert D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convert D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convert D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convert D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
Convert D2 (OSR=8192)	0	1	0	1	1	0	1	0	0x5A
ADC Read	0	0	0	0	0	0	0	0	0x00
PROM Read	1	0	1	0	Ad2	Ad1	Ad0	0	0xA0 to 0xAE

Figure 4: Command structure

RESET SEQUENCE

The Reset sequence shall be sent once after power-on to make sure that the calibration PROM gets loaded into the internal register. It can be also used to reset the device PROM from an unknown condition.

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the MS5805 to function is to send several SCLs followed by a reset sequence or to repeat power on reset.

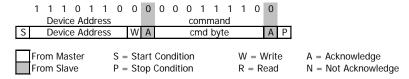


Figure 5: I²C Reset Command

PROM READ SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 7 addresses resulting in a total memory of 112 bit. Addresses contains factory data and the setup, calibration coefficients, the serial code and CRC. The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first. The PROM Read command consists of two parts. First command sets up the system into PROM read mode. The second part gets the data from the system.

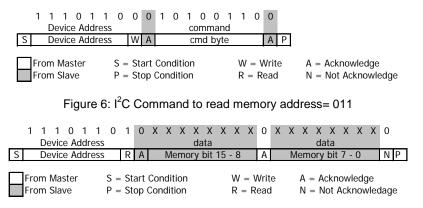


Figure 7: I²C answer from MS5805

CONVERSION SEQUENCE

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well. A conversion can be started by sending the command to MS5805. When command is sent to the system it stays busy until conversion is done. When conversion is finished the data can be accessed by sending a Read command, when an acknowledge is sent from the MS5805, 24 SCL cycles may be sent to receive all result bits. Every 8 bits the system waits for an acknowledge signal.

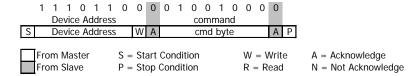


Figure 8: I²C command to initiate a pressure conversion (OSR=4096, typ=D1)

Figure 9: I²C ADC read sequence

Figure 10: I²C answer from MS5805

CYCLIC REDUNDANCY CHECK (CRC)

MS5805-02BA contains a PROM memory with 112-Bit. A 4-bit CRC has been implemented to check the data validity in memory. The C code example below describes the CRC calculation which is stored on DB12 to DB15 in the first PROM word.

A d d	D B 1 5	D B 1 4	D B 1 3	D B 1	D B 1	D B 1 0	D B 9	D B 8	D B 7	D B 6	D B 5	D B 4	D B 3	D B 2	D B 1	D B 0					
0		CRC Factory defined																			
1		C1																			
2								С	2												
3								С	3												
4		C4																			
5		C5																			
6								С	6				C6								

Figure 11: Memory PROM mapping

C Code example for CRC-4 calculation:

```
unsigned char crc4(unsigned int n_prom[])
                                                                      // n_prom defined as 8x unsigned int (n_prom[8])
                                                                      // simple counter
unsigned int n_rem=0;
                                                                      // crc reminder
unsigned char n_bit;
          n_prom[0]=((n_prom[0]) \& 0x0FFF);
                                                                      // CRC byte is replaced by 0
          n_prom[7]=0;
                                                                      // Subsidiary value, set to 0
          for (cnt = 0; cnt < 16; cnt++)
                                                                      // operation is performed on bytes
                                                                      // choose LSB or MSB
                                        n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
                    if (cnt%2==1)
                                       n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
                    else
                    for (n_bit = 8; n_bit > 0; n_bit--)
                              if (n_rem & (0x8000))
                                                           n_rem = (n_rem << 1) ^0x3000;
                              else
                                                            n_rem = (n_rem << 1);
          n_rem= ((n_rem >> 12) & 0x000F);
                                                                      // final 4-bit reminder is CRC code
          return (n_rem ^ 0x00);
}
```

APPLICATION CIRCUIT

The MS5805-02BA is a circuit that can be used in conjunction with a microcontroller in mobile altimeter applications. It is designed for low-voltage systems with a supply voltage of 3 V.

I²C protocol communication

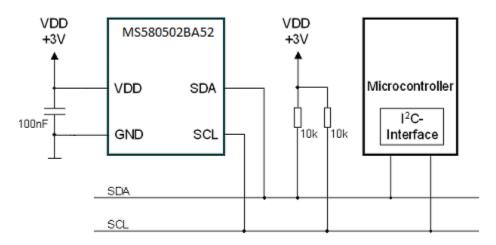


Figure 12: Typical application circuit with I²C protocol communication

PIN CONFIGURATION

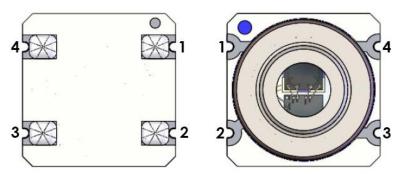


Figure 13: pin configuration

Pin	Name	Type	Function
1	VDD	Р	Positive supply voltage
2	SCL	I	Serial data Clock
3	SDA	Ю	I ² C data IO
4	GND	Р	Ground

DEVICE PACKAGE OUTLINE

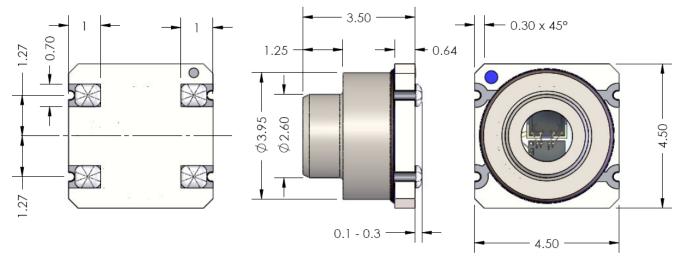


Figure 14: MS5805-02BA package outlines

Notes:

- (1) Dimensions in mm
- (2) Interpret Dim and tolerance per ASME Y14.5M 1994 (3) Angular dimensions ± 0.3°
- (4) Hole locations ± 0.1
- (4) Linear dimension ± 0.1
- (5) Cap centering ± 0.15 from center of the ceramic

RECOMMENDED PAD LAYOUT

Pad layout for bottom side of the MS5805 soldered onto printed circuit board.

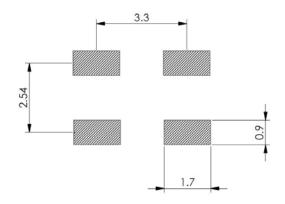
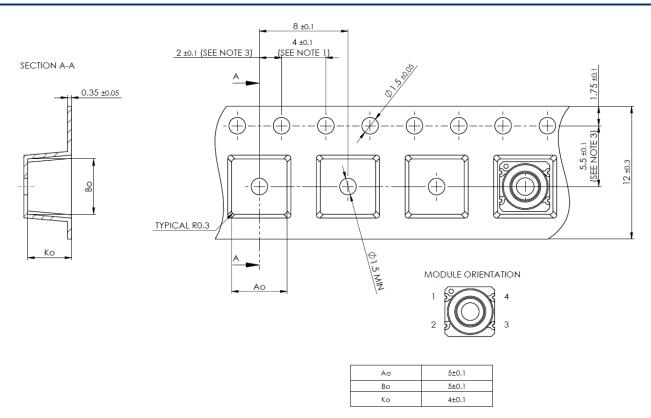



Figure 15: MS5805 pad layout

SHIPPING PACKAGE

NOTE:

- 1: 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2: CAMBER IN COMPLIANCE WITH EIA 481 3: POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITIONOF POCKET, NOT POCKET HOLE 4: IN CASE OF DOUBT REFER TO EIA-481-C

Figure 16: Tape and Reel

MOUNTING AND ASSEMBLY CONSIDERATIONS

SOLDERING

Please refer to the application note AN808 available on our website for all soldering issues.

CONNECTION TO PCB

The package outline of the module allows the use of a flexible PCB for interconnection. This can be important for applications in watches and other special devices.

CLEANING

The MS5805-02BA has been manufactured under cleanroom conditions. It is therefore recommended to assemble the sensor under class 10'000 or better conditions. Should this not be possible, it is recommended to protect the sensor opening during assembly from entering particles and dust. To avoid cleaning of the PCB, solder paste of type "no-clean" shall be used. Cleaning might damage the sensor!

ESD PRECAUTIONS

The electrical contact pads are protected against ESD up to 2 kV HBM (human body model). It is therefore essential to ground machines and personnel properly during assembly and handling of the device. The MS5805-02BA is shipped in antistatic transport boxes. Any test adapters or production transport boxes used during the assembly of the sensor shall be of an equivalent antistatic material.

DECOUPLING CAPACITOR

Particular care must be taken when connecting the device to the power supply. A 100 nF ceramic capacitor must be placed as close as possible to the MS5805-02BA VDD pin. This capacitor will stabilize the power supply during data conversion and thus, provide the highest possible accuracy.

ORDERING INFORMATION

Part Number / Art. Number	Product	Delivery Form
MS580502BA01-50	MS5805-02BA Miniature Altimeter Module T&R	Tape& reel TOP-UP