

- Integrated Digital Pressure Sensor (24-bit  $\Delta\Sigma$  ADC)
- Fast Conversion Down to 1 ms
- Low Power, 1 μA (standby < 0.15 μA)</li>
- Supply Voltage: 1.8 to 3.6VPressure Range: 1 to 30 PSI
- I<sup>2</sup>C and SPI Interface



Preliminary

### **DESCRIPTION**

The MS5525DSO is a new generation of Digital Small Outline pressure sensors from MEAS with SPI and I $^2$ C bus interface designed for high volume OEM users. The sensor module includes a pressure sensor and an ultra low power 24-bit  $\Delta\Sigma$  ADC with internal factory calibrated coefficients. It provides a 24-bit digital pressure and temperature value and different operation modes that allow the user to optimize for conversion speed and current consumption. The MS5525DSO can be interfaced to virtually any microcontroller. The communication protocol is simple, without the need of programming internal registers in the device.

This new sensor module generation is based on leading MEMS technology and latest benefits from MEAS proven experience and know-how in high volume manufacturing of pressure modules, which have been widely used for over a decade.

The rugged engineered thermoplastic transducer is available in single and dual port configurations, and can measure absolute, gauge, compound, and differential pressure from 1 to 30psi.

#### **FEATURES**

**APPLICATIONS** 

- Small Outline IC Package
- Barbed Pressure Ports
- Low Power, High Resolution ADC
- Digital Pressure and Temperature Outputs
- Factory Automation
- Altitude and Airspeed Measurements
- Medical Instruments
- Leak Detection

#### STANDARD RANGES (PSI)

| FS Pressure | Absolute | Gauge          | Differential  | Compound |
|-------------|----------|----------------|---------------|----------|
| 1           |          | DB, SB, ST, DH | DB, SB,ST, DH |          |
| 2           |          | DB, SB, ST, DH | DB, SB,ST, DH |          |
| 5           |          | DB, SB, ST, DH | DB, SB,ST ,DH |          |
| 15          | DB, DH   | DB, SB, ST, DH | DB, DH        |          |
| 30          | DB, DH   | DB, SB, ST, DH | DB, DH        | SB, ST   |

See Package Configurations: DB= Dual Barb, DH= Dual Hole, SB, Single Barb, ST, Single Tube

# MS5525DSO (High Resolution Digital)

## **ABSOLUTE MAXIMUM RATING**

| Parameter           | Conditions                         | Min               | Max | Unit | Symbol/Notes |  |
|---------------------|------------------------------------|-------------------|-----|------|--------------|--|
| Supply Voltage      | $T_A = 25^{\circ}C$                | -0.3              | 3.6 | V    | $V_{DD}$     |  |
| Storage Temperature |                                    | -40               | 125 | °C   |              |  |
| Overpressure        | T <sub>A</sub> = 25 °C, both Ports |                   | 60  | psi  |              |  |
| Burst Pressure      | T <sub>A</sub> = 25 °C, Port 1     |                   |     | psi  | See Table 1  |  |
| ESD                 | НВМ                                | -4                | +4  | kV   | EN 61000-4-2 |  |
| Solder Temperature  |                                    | 250°C, 5 sec max. |     |      |              |  |

### Table 1- BURST PRESSURE BY RANGE AND PORT DESIGNATION

| Range | Port 1 | Port 2 | Unit |
|-------|--------|--------|------|
| 001   | 20     | 20     | psi  |
| 002   | 20     | 20     | psi  |
| 005   | 15     | 20     | psi  |
| 015   | 45     | 90     | psi  |
| 030   | 90     | 200    | psi  |

## **ENVIRONMENTAL SPECIFICATIONS**

| Conditions                                                    |
|---------------------------------------------------------------|
| Mil Spec 202F, Method 213B, Condition C, 3 Drops              |
| Mil Spec 202F, Method 214A, Condition 1E, 1Hr Each Axis       |
| 100 Cycles over Storage Temperature, 30 minute dwell          |
| 1 Million FS Cycles                                           |
| >10Yrs, 70 °C, 10 Million Pressure Cycles, 120%FS<br>Pressure |
|                                                               |

## PERFORMANCE SPECIFICATIONS

Supply Voltage<sup>1</sup> 3.0 Vdc

Reference Temperature: 25°C (unless otherwise specified)

| PARAMETERS                                   | MIN   | TYP              | MAX  | UNITS | NOTES |
|----------------------------------------------|-------|------------------|------|-------|-------|
| Operating Voltage                            | 1.8   |                  | 3.6  |       |       |
| ADC                                          |       |                  | 24   | bits  |       |
| Pressure Accuracy                            | -0.25 |                  | 0.25 | %FS   | 2,5   |
| Total Error Band (TEB)                       | -2.5  |                  | 2.5  | %FS   | 3     |
| Temperature Accuracy (Reference Temperature) | -1.5  |                  | 1.5  | °C    | 4,5   |
| Temperature Accuracy                         | -2.5  |                  | 2.5  | °C    | 4,5   |
| Supply Current                               | Se    | ee OSR Table Bel | OW   | mA    |       |
| Compensated Temperature                      | 0     |                  | 85   | °C    |       |
| Operating Temperature                        | -40   |                  | +125 | °C    |       |
| Conversion Time                              | Se    | ee OSR Table Bel | ow   | mS    |       |
| Weight                                       |       | 3                |      | grams |       |

Media

Non-Corrosive Dry Gases Compatible with Phosphor Bronze, Silicon, Pyrex, LCP, RTV, Gold, Aluminum and Epoxy. See "Wetted Material by Port Designation" chart below.

#### Notes

- 1. Proper operation requires an external capacitor placed as shown in Application Circuit. Output is not ratiometric to supply voltage.
- 2. The maximum deviation from a best fit straight line(BFSL) fitted to the output measured over the pressure range at 25°C. Includes all errors due to pressure non linearity, hysteresis, and non repeatability.
- 3. The maximum deviation from ideal output with respect to input pressure and temperature over the compensated temperature range. Total error band (TEB) includes all accuracy errors, thermal errors over the compensated temperature range, span and offset calibration tolerances. TEB values are valid only at the calibrated supply voltage.
- 4. The deviation from a best fit straight line (BFSL) from 25°C. to 85°C.
- 5. Six coefficients must be read by microcontroller software and are used in a mathematical calculation for converting D1 and D2 into compensated pressure and temperature values.

## **OVERSAMPLNG RATIO (OSR) PERFORMANCE CHARACTERISTICS**

### **SUPPLY CURRENT CHARACTERISTICS**

| Parameter                          | Symbol          | Conditions        | Min. | Тур. | Max  | Unit |
|------------------------------------|-----------------|-------------------|------|------|------|------|
| Supply current (1 sample per sec.) |                 | OSR 4096          |      | 12.5 |      |      |
|                                    |                 | 2048              |      | 6.3  |      |      |
|                                    | I <sub>DD</sub> | 1024              |      | 3.2  |      | μA   |
|                                    |                 | 512               |      | 1.7  |      |      |
|                                    |                 | 256               |      | 0.9  |      |      |
| Peak supply current                |                 | during conversion |      | 1.4  |      | mA   |
| Standby supply current             |                 | at 25℃            |      | 0.02 | 0.14 | μA   |

## ANALOG DIGITAL CONVERTER (ADC)

| Parameter       | Symbol         | Conditions |      | Min. | Тур. | Max  | Unit |
|-----------------|----------------|------------|------|------|------|------|------|
|                 |                | OSR        | 4096 | 7.40 | 8.22 | 9.04 |      |
|                 |                |            | 2048 | 3.72 | 4.13 | 4.54 |      |
| Conversion time | t <sub>c</sub> |            | 1024 | 1.88 | 2.08 | 2.28 | ms   |
|                 |                |            | 512  | 0.95 | 1.06 | 1.17 |      |
|                 |                |            | 256  | 0.48 | 0.54 | 0.60 |      |

## TEMPERATURE OUTPUT CHARACTERISTICS ( $V_{DD} = 3 \text{ V}, T = 25 ^{\circ}\text{C}$ UNLESS OTHERWISE NOTED)

| Parameter                         | Conditions                    |      | Min. | Тур.  | Max  | Unit       |
|-----------------------------------|-------------------------------|------|------|-------|------|------------|
|                                   | OSR                           | 4096 |      | 0.002 |      |            |
|                                   |                               | 2048 |      | 0.003 |      |            |
| Resolution RMS                    |                               | 1024 |      | 0.005 |      | $^{\circ}$ |
|                                   |                               | 512  |      | 0.008 |      |            |
|                                   |                               | 256  |      | 0.012 |      |            |
| Maximum error with supply voltage | V <sub>DD</sub> = 1.8 V 3.6 V |      | -0.5 |       | +0.5 | °          |

## **INPUT/OUTPUT SPECIFICATIONS**

## DIGITAL INPUTS (CSB, I<sup>2</sup>C, DIN, SCLK)

| Parameter             | Symbol                                         | Conditions   | Min.                | Тур. | Max                  | Unit |
|-----------------------|------------------------------------------------|--------------|---------------------|------|----------------------|------|
| Serial data clock     | SCLK                                           | SPI protocol |                     |      | 20                   | MHz  |
| Serial data clock     | SCL                                            | I2C protocol |                     |      | 400                  | kHz  |
| Input high voltage    | V <sub>H</sub>                                 | Pins CSB     | 80% V <sub>DD</sub> |      | 100% V <sub>DD</sub> | V    |
| Input low voltage     | VL                                             |              | 0% V <sub>DD</sub>  |      | 20% V <sub>DD</sub>  | V    |
| Input leakage current | I <sub>leak25</sub> ℃<br>I <sub>leak85</sub> ℃ | at 25℃       |                     |      | 0.15                 | μΑ   |
| Input capacitance     | C <sub>IN</sub>                                |              |                     |      | 6                    | pF   |

## PRESSURE OUTPUTS (I<sup>2</sup>C, DOUT)

| Parameter           | Symbol            | Conditions                   | Min.                | Тур. | Max                  | Unit |
|---------------------|-------------------|------------------------------|---------------------|------|----------------------|------|
| Output high voltage | V <sub>OH</sub>   | I <sub>source</sub> = 0.6 mA | 80% V <sub>DD</sub> |      | 100% V <sub>DD</sub> | V    |
| Output low voltage  | $V_{OL}$          | $I_{sink} = 0.6  mA$         | 0% V <sub>DD</sub>  |      | $20\% V_{DD}$        | V    |
| Load capacitance    | C <sub>LOAD</sub> |                              |                     |      | 16                   | pF   |

### **FUNCTIONAL DESCRIPTION**

### **BLOCK DIAGRAM**

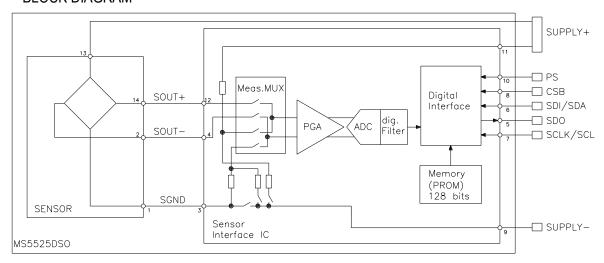



Figure 1: Block diagram of MS5525DSO

#### **GENERAL**

The MS5525DSO consists of a piezo-resistive sensor and a sensor interface IC. The main function of the MS5525DSO is to convert the uncompensated analog output voltage from the piezo-resistive pressure sensor to a 24-bit digital value, as well as providing a 24-bit digital value for the temperature of the sensor.

#### **FACTORY CALIBRATION**

Every module is individually factory calibrated at two temperatures and three pressures. As a result, six coefficients necessary to compensate for process variations and temperature variations are calculated and stored in the 128-bit PROM of each module. These bits, partitioned into six coefficients, C1 through C6, must be read by the microcontroller software and used in the program converting D1 and D2 into compensated pressure and temperature values.

The coefficients C0 and C7 are for factory calibration and CRC.

#### **SERIAL INTERFACE**

The MS5525DSO has built in two types of serial interfaces: SPI and I<sup>2</sup>C. Pulling the Protocol Select pin PS to low selects the SPI protocol, pulling PS to high activates the I<sup>2</sup>C bus protocol.

| Pin PS | Mode             | Pins used           |
|--------|------------------|---------------------|
| High   | I <sup>2</sup> C | SDA, SCL CSB        |
| Low    | SPI              | SDI, SDO, SCLK, CSB |

#### **SPI MODE**

The external microcontroller clocks in the data through the input SCLK (Serial CLocK) and SDI (Serial Data In). In the SPI mode module can accept both mode 0 and mode 3 for the clock polarity and phase. The sensor responds on the output SDO (Serial Data Out). The pin CSB (Chip Select) is used to enable/disable the interface, so that other devices can talk on the same SPI bus. The CSB pin can be pulled high after the command is sent or after the end of the command execution (for example end of conversion). The best noise performance from the module is obtained when the SPI bus is idle and without communication to other devices during the ADC conversion.

#### I<sup>2</sup>C MODE & ADDRESSING

The external microcontroller clocks in the data through the input SCL (Serial CLock) and SDA (Serial DAta). The sensor responds on the same pin SDA which is bidirectional for the  $I^2C$  bus interface. So this interface type uses only 2 signal lines and does not require a chip select, which can be favorable to reduce board space. In  $I^2C$  -Mode the complement of the pin CSB (Chip Select) represents the LSB of the  $I^2C$  address. It is possible to use two sensors with two different addresses on the  $I^2C$  bus. The pin CSB must be connected to VDD or GND do not leave these pins unconnected.

| Pin CSB | Address (7 bits) |
|---------|------------------|
| High    | 0x76             |
| Low     | 0x77             |

#### **COMMANDS**

The MS5525DSO has only five basic commands:

- 1. Reset
- 2. Read PROM (128 bit of calibration words)
- 3. D1 conversion
- 4. D2 conversion
- 5. Read ADC result (24 bit pressure / temperature)

Size of each command is 1 byte (8 bits) as described in the table below. After ADC read commands the device will return 24 bit result and after the PROM read 16bit result. The address of the PROM is embedded inside of the PROM read command using the Ad2, Ad1 and Ad0 bits.

|                       | Com |     | hex value |     |             |             |             |      |         |
|-----------------------|-----|-----|-----------|-----|-------------|-------------|-------------|------|---------|
| Bit number            | 0   | 1   | 2         | 3   | 4           | 5           | 6           | 7    |         |
| Bit name              | PRM | COV | -         | Тур | Ad2/<br>Os2 | Ad1/<br>Os1 | Ad0/<br>Os0 | Stop |         |
| Command               |     |     |           |     |             |             |             |      |         |
| Reset                 | 0   | 0   | 0         | 1   | 1           | 1           | 1           | 0    | 0x1E    |
| Convert D1 (OSR=256)  | 0   | 1   | 0         | 0   | 0           | 0           | 0           | 0    | 0x40    |
| Convert D1 (OSR=512)  | 0   | 1   | 0         | 0   | 0           | 0           | 1           | 0    | 0x42    |
| Convert D1 (OSR=1024) | 0   | 1   | 0         | 0   | 0           | 1           | 0           | 0    | 0x44    |
| Convert D1 (OSR=2048) | 0   | 1   | 0         | 0   | 0           | 1           | 1           | 0    | 0x46    |
| Convert D1 (OSR=4096) | 0   | 1   | 0         | 0   | 1           | 0           | 0           | 0    | 0x48    |
| Convert D2 (OSR=256)  | 0   | 1   | 0         | 1   | 0           | 0           | 0           | 0    | 0x50    |
| Convert D2 (OSR=512)  | 0   | 1   | 0         | 1   | 0           | 0           | 1           | 0    | 0x52    |
| Convert D2 (OSR=1024) | 0   | 1   | 0         | 1   | 0           | 1           | 0           | 0    | 0x54    |
| Convert D2 (OSR=2048) | 0   | 1   | 0         | 1   | 0           | 1           | 1           | 0    | 0x56    |
| Convert D2 (OSR=4096) | 0   | 1   | 0         | 1   | 1           | 0           | 0           | 0    | 0x58    |
| ADC Read              | 0   | 0   | 0         | 0   | 0           | 0           | 0           | 0    | 0x00    |
| PROM Read             | 1   | 0   | 1         | 0   | Ad2         | Ad1         | Ad0         | 0    | 0xA0 to |
|                       |     |     |           |     |             |             |             |      | 0xAE    |

Figure 4: Command structure

#### Start 5525DSO-pp005GS Example Tmin=-40°C, Tmax=125°C Read Calibration Data from PROM Size [1] Value Recommended Example/ Variable **Coefficient Description** Variable Type **Typical** [Bit] Min Max C1 Pressure Sensitivity, SENS<sub>T1</sub> unsigned int 16 65535 36402 16 16 C2 65535 39473 Pressure Offset, OFF<sub>T1</sub> 0 unsigned int 16 16 C3 Temperature Coefficient, Pressure Sensitivity, TCS unsigned int 16 0 65535 40393 16 C4 0 Temperature Coefficient, Pressure Offset, TCO unsigned int 16 65535 29523 16 C5 Reference Temperature, TREF unsigned int 16 0 65535 29854 16 C6 unsigned int 16 0 65535 **Temperature Coefficient Temperature, TEMPSENS** 21917 Read Digital Pressure and Temperature Data **Digital Pressure Value** unsigned int 32 16777216 5990585 D1 24 0 D2 **Digital Temperature Value** unsigned int 32 24 16777216 3871665 Calculate Temperature dΤ Difference between actual and reference temperature dT = D2 - $T_{RE\;F}$ = D2 - C5 \* $2^{Q5}$ -16776960 16777216 49112 signed int 32 25 Measured temperature 2513 **TEMP** -4000 12500 TEMP=20 °C+dT\*TEMPSENS=2000+dT\*C6/2Q6 signed int 32 =25.13 °C Calculate Temperature Compensated Pressure Offset at actual temperature OFF=OFF $_{T1}$ +TCO \* dT=C2\*2 $^{\Omega^2}$ +(C4\*dT)/2 $^{\Omega^4}$ OFF signed int 64 41 2632212952 Sensitivity at actual temperature **SENS** signed int 64 1208319025

## **Display Pressure and Temperature Value**

Figure 1: Flow chart for pressure and temperature reading and software compensation.

SENS=SENS<sub>T1</sub>+TCS\*dT=C1\* $2^{Q1}$ +(C3\*dT)/ $2^{Q3}$ 

**Temperature Compensated Pressure** 

P=D1\*SENS-OFF=(D1\*SENS/2<sup>21</sup>-OFF)/2<sup>15</sup>

signed int 32

25005

=2.5005psi

## **Qx Coefficients Matrix by Pressure Range**

| Part Number      | Pmin | Pmax | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | T <sub>RES</sub> | P <sub>RES</sub> |
|------------------|------|------|----|----|----|----|----|----|------------------|------------------|
| 5525DSO-pp001GS  | 0    | 1    | 14 | 16 | 8  | 5  | 7  | 21 | 0.01             | 0.0001           |
| 5525DSO-pp001DS  | -1   | 1    | 15 | 17 | 7  | 5  | 7  | 21 | 0.01             | 0.0001           |
| 5525DSO-pp002GS  | 0    | 2    | 13 | 15 | 9  | 6  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp002DS  | -2   | 2    | 14 | 16 | 8  | 5  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp005GS  | 0    | 5    | 15 | 16 | 7  | 5  | 7  | 21 | 0.01             | 0.0001           |
| 5525DSO-pp005DS  | -5   | 5    | 16 | 18 | 7  | 4  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0015AS | 0    | 15   | 16 | 16 | 7  | 5  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0015GS | 0    | 15   | 16 | 16 | 7  | 5  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0015DS | -15  | 15   | 17 | 19 | 5  | 3  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0030AS | 0    | 30   | 17 | 19 | 5  | 4  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0030GS | 0    | 30   | 17 | 19 | 5  | 4  | 7  | 22 | 0.01             | 0.0001           |
| 5525DSO-pp0030DS | -30  | 30   | 17 | 19 | 5  | 3  | 7  | 22 | 0.01             | 0.0001           |

#### **MEMORY MAPPING**

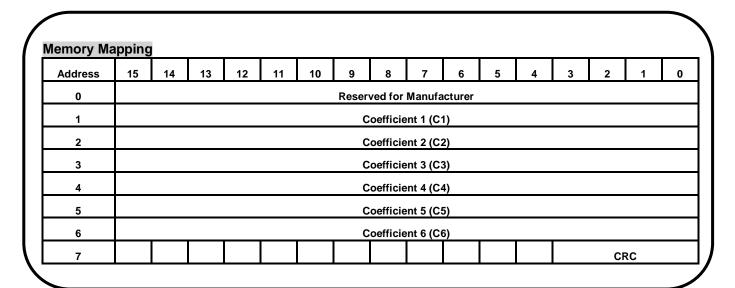



Figure 2: Memory PROM Mapping

#### Notes

[1] Maximal size of intermediate result during evaluation of variable.

## **SPI INTERFACE**

#### **RESET SEQUENCE**

The Reset sequence shall be sent once after power-on to make sure that the calibration PROM gets loaded into the internal register. It can be also used to reset the device ROM from an unknown condition

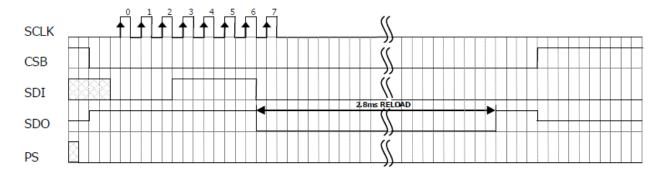



Figure 5: Reset command sequence SPI mode 0

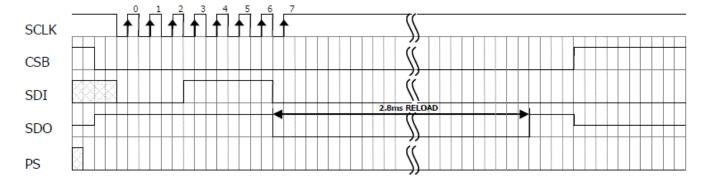



Figure 6: Reset command sequence SPI mode 3

#### **CONVERSION SEQUENCE**

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. The chip select can be disabled during this time to communicate with other devices. After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well.

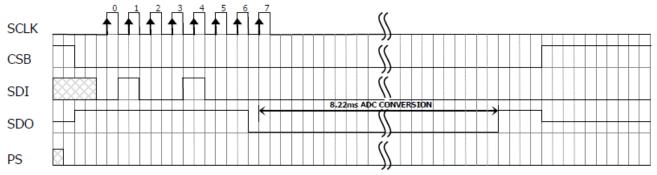



Figure 7: Conversion out sequence, Typ=d1, OSR = 4096

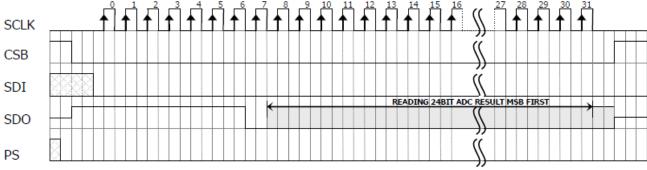



Figure 8: ADC Read sequence

#### PROM READ SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 8 addresses resulting in a total memory of 128 bit. Address 0 contains factory data and the setup, addresses 1-6 calibration coefficients and address 7 contains the serial code and CRC. The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first.

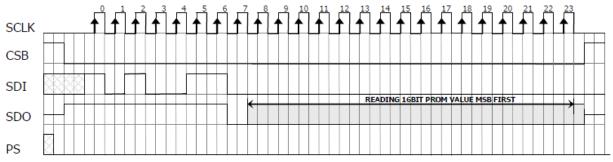



Figure 9: PROM Read sequence, address = 011 (Coefficient 3).

## I<sup>2</sup>C INTERFACE

#### **COMMANDS**

Each I<sup>2</sup>C communication message starts with the start condition and it is ended with the stop condition. The MS5525DSO address is 111011Cx, where C is the complementary value of the pin CSB. Since the IC does not have a microcontroller inside, the commands for I<sup>2</sup>C and SPI are quite similar.

#### RESET SEQUENCE

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the MS5525DSO to function is to send several SCLKs followed by a reset sequence or to repeat power on reset.

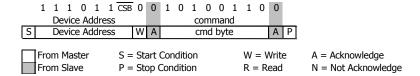



Figure 10: I<sup>2</sup>C Reset Command

#### PROM READ SEQUENCE

The PROM Read command consists of two parts. First command sets up the system into PROM read mode. The second part gets the data from the system.

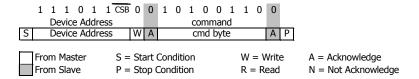



Figure 11: I2C Command to read memory address= 011 (Coefficient 3)

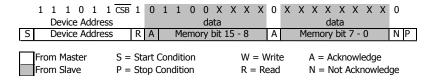



Figure 12: I2C response from MS5525DSO

#### **CONVERSION SEQUENCE**

A conversion can be started by sending the command to MS5525DSO. When command is sent to the system it stays busy until conversion is done. When conversion is finished the data can be accessed by sending a Read command, when an acknowledge appears from the MS5525DSO, 24 SCLK cycles may be sent to receive all result bits. Every 8-bit the system waits for an acknowledge signal.

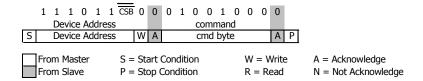



Figure 13: I<sup>2</sup>C Command to initiate a pressure conversion (OSR=4096, typ=D1)

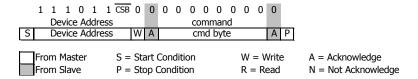



Figure 14: I<sup>2</sup>C ADC read sequence

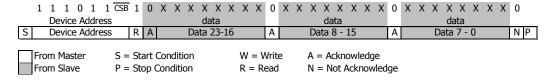
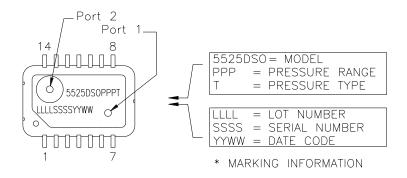




Figure 15: I<sup>2</sup>C response from MS5525DSO

### **CYCLIC REDUNDANCY CHECK (CRC)**

MS5525DSO contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented to check the data validity in memory. The application note AN520 describes in detail CRC-4 code used.

## PINOUT, MARKING, AND PRESSURE TYPE CONFIGURATION



| Pressure Type                  | Pmin    | Pmax    | Description                                                                                                                                                       |
|--------------------------------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute                       | 0psiA   | +Prange | Output is proportional to the difference between 0psiA (Pmin) and pressure applied to Port 1.                                                                     |
| Differential/<br>Bidirectional | -Prange | +Prange | Output is proportional to the difference between Port 1 and Port 2. Output swings positive when Port 2> Port 1. Output is 50% of total counts when Port 1=Port 2. |
| Gauge                          | 0psiG   | +Prange | Output is proportional to the difference between 0psiG (Pmin) and Port 1. Output swings positive when Port 2> Port 1.                                             |
| Compound                       | -15psiG | +Prange | Output is proportional to the difference between -15psiG pressure (Pmin) and pressure applied to Port 2.                                                          |

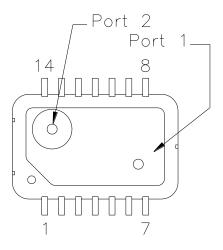

| Pin Name | Pin   | Function                                                   |                                                            |  |  |  |  |
|----------|-------|------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
|          |       | I2C                                                        | SPI                                                        |  |  |  |  |
| SGND     | 1,3   | Sensor Ground                                              |                                                            |  |  |  |  |
| SOUT-    | 2,4   | Sensor Outputs, Negative                                   |                                                            |  |  |  |  |
| SDO      | 5     |                                                            | Serial Data Output                                         |  |  |  |  |
| SDA/SDI  | 6     | I <sup>2</sup> C Data Input and Output                     | SPI Serial Data Input                                      |  |  |  |  |
| SCL/SCLK | 7     | I <sup>2</sup> C Clock                                     | SPI Clock                                                  |  |  |  |  |
| CSB      | 8     | Defines I <sup>2</sup> C Address                           | Chip Select (Active Low)                                   |  |  |  |  |
| GND      | 9     | Ground                                                     |                                                            |  |  |  |  |
| PS       | 10    | Protoc                                                     | Protocol Select                                            |  |  |  |  |
|          |       | PS = (VDD)                                                 | PS = (GND)                                                 |  |  |  |  |
|          |       | I <sup>2</sup> C Protocol Selected                         | SPI Protocol Selected                                      |  |  |  |  |
|          |       | CSB= (VDD) I <sup>2</sup> C Address =11101                 | CSB= (VDD) I <sup>2</sup> C Address =1110110X (0xEC, 0xED) |  |  |  |  |
|          |       | CSB= (GND) I <sup>2</sup> C Address=11101111X (0xEE, 0xEF) |                                                            |  |  |  |  |
| Supply+  | 11,13 | Positive Supply Voltage                                    |                                                            |  |  |  |  |
| SOUT+    | 12,14 | Sensor Outputs, Positive                                   |                                                            |  |  |  |  |

## WETTED MATERIAL BY PORT DESIGNATION

|        |        |     |                    | Material |       |     |      |          |                 |       |
|--------|--------|-----|--------------------|----------|-------|-----|------|----------|-----------------|-------|
| Style  | Port   | LCP | Phosphor<br>Bronze | Silicon  | Pyrex | RTV | Gold | Aluminum | Silicone<br>Gel | Ероху |
| DB, DH | Port 2 | Х   |                    | Х        | Х     | Х   |      |          |                 | Х     |
| ов, оп | Port 1 | Х   | Х                  | Х        | Х     | Х   |      | Х        |                 | Х     |
| ST,SB  | Port 2 | X   |                    | Х        | X     | Х   |      |          |                 | Х     |

<sup>&</sup>quot;X" Indicates Wetted Materials

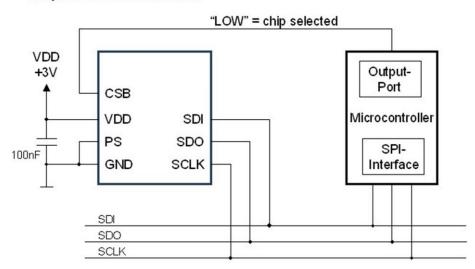
## **RECOMMEND PCB LAYOUT**




The recommend PCB layout details the required interconnections between the piezo-resistive sensor and internal sensor interface IC that is in accordance to the table below. Additional connections for the CSB and PS pins must be made to define the digital protocol; these are detailed in the application circuit on the following page.

| PAD NO. | FUNCTION | PAD NO. | FUNCTION |
|---------|----------|---------|----------|
| 1       | SGND     | 8       | CSB      |
| 2       | SOUT-    | 9       | SUPPLY-  |
| 3       | SGND     | 10      | PS       |
| 4       | SOUT-    | 11      | SUPPLY+  |
| 5       | SDO      | 12      | SOUT+    |
| 6       | SDI/SDA  | 13      | SUPPLY+  |
| 7       | SCLK/SCL | 14      | SOUT+    |

FUNCTION PINS THAT SHARE THE SAME NAME (SGND, SOUT+, SOUT-, SUPPLY+) MUST BE CONNECTED TOGETHER ON PCB FOR PROPER OPERATION.


NEED TO PLACE 0.1uF DECOUPING CAPACITOR BETWEEN SUPPLY+ AND SUPPLY- ON PCB AND AS CLOSE AS POSSIBLE TO SENSOR



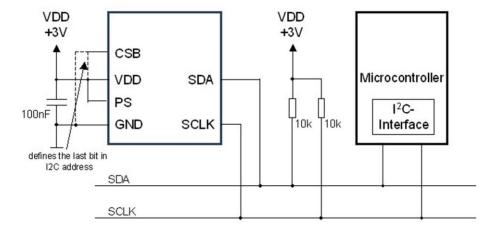
## **APPLICATION CIRCUIT**

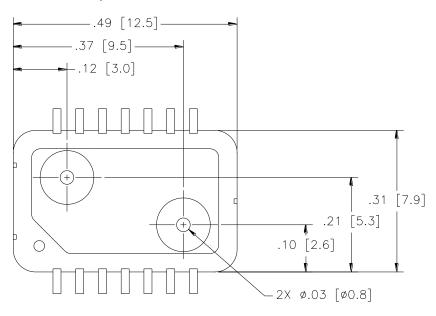
The MS5525DSO is a circuit that can be used in conjunction with a microcontroller. It is designed for low-voltage systems with a supply voltage of 3 V.

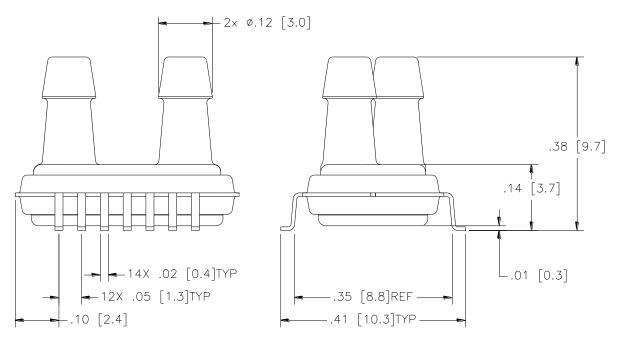
### SPI protocol communication



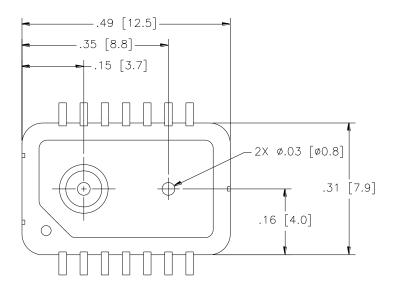
## I<sup>2</sup>C protocol communication

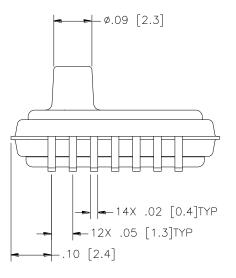


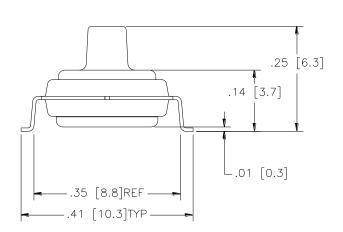


Figure 17: Typical application circuit with SPI / I<sup>2</sup>C protocol communication


#### Note

1. Place 100nF capacitor between Supply and GND to within 2 cm of sensor.


## **DIMENSIONS**


## MS5525DSO-DBxxxyS



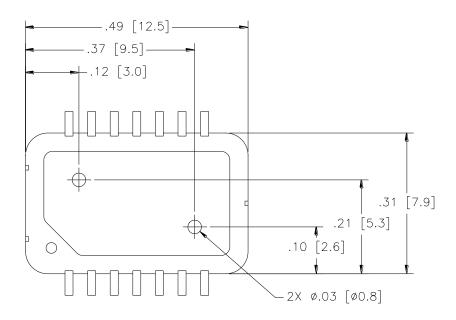


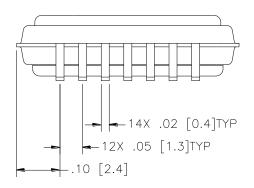

### MS5525DSO-STxxxyS

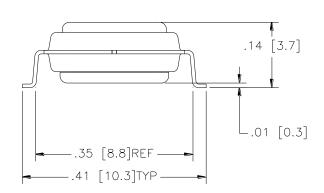







## MS5525DSO-SBxxxyS





.10 [2.4]

—.41 [10.3]TYP —

### MS5525DSO-DHxxxyS







## **ORDERING INFORMATION**

| 5525DSO   | - | DB                                                                       | 005                             | G                                                   | S             |
|-----------|---|--------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------|
| Model     | • | Package Style                                                            | Pressure<br>Range               | Pressure<br>Type                                    | Pin Style     |
| MS5525DSO | - | DB = Dual Barb<br>SB = Single Barb<br>ST = Single Tube<br>DH = Dual Hole | 001<br>002<br>005<br>015<br>030 | A = Absolute D = Differential G = Gage C = Compound | S = Gull Wing |